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Abstract: Fortran 90 is  a  modern  language that introduces  many  impor- 
tant new features  beneficial  for  scientific  programming.  While the array-syntax 
notation has received the most attention, we have  found that many  modern 
softaware  development  techniques  can  be supported by this language,  including 
object-oriented  concepts. 

While Fortran 90 is  not  a  full  object-oriented  language it can  directly sup- 
port many of the important features of such  languages. Features not  directly 
supported can he emulated by  software constructs. It is backward  compatible 
with Fortran 77, and a subset of HPF, so new concepts  can  be introduced into 
existing  programs  in  a  controlled manner. This allows experienced Fortran 77 
programmers to modernize their software,  making it easier to understand, mod- 
ify, share, explain, and extend. 

We discuss our experiences  in  plasma  particle  simulation and  unstructured 
adaptive mesh  refinement  on supercomputers, illustrating the features of For- 
tran 90 that support the object-oriented  methodology. All of our Fortran 90 
programs  achieve  high  performance  with the benefits of modern abstraction 
modeling  capabilities. 

*Currently in residence at the National  Aeronautical  and  Space  Administration’s  Jet  Propul- 
sion  Laboratory,  California  Institute of Technology, U.S.A. 
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1.1 INTRODUCTION 

Scientific application  programming  involves  unifying  abstract  physical  concepts 
and  numerical models with  sophisticated  programming  techniques  that  require 
patience  and  experience to master.  Furthermore, codes  typically  written by sci- 
entists  are  constantly  changing to model new physical effects. These  factors  can 
contribute  to long  development  periods:  unexpected errors,  and  software  that 
is difficult to comprehend,  part,icularly  when  multiple  developers  are  involved. 

The  Fortran 90 programming  language (Ellis et  al., 1994) addresses  the 
needs of modern scientific programming by providing  features that raise the 
ievei of abstraction,  without sacrificing performance.  Consider  a 3D parallel 
plasma particle-in-cell (PIC)  program in Fortran 77 which will typically define 
the  particles,  charge  density field, force field, and  routines to push  particles 
and  deposit  charge.  This is a segment of the main  program where many  details 
have  been omitted. 

dimension part(idimp,  npmax),  q(nx, ny. nzpmx) 
dimension fx(nx, ny, nzpmx),  fy(nx, ny, nzpmx),  fz(nx, ny, nzpmx) 
da.ta, qme, dt, /-1.?.2/ 
call push(part,fx,fy,fz,npp,qtme,dt,wke,nx,ny,npmax,nzpmx, ...) 
call dpost(part,y,npp.noff,qme,nx,ny,idimp,npmax,nzpmx) 

Note that  the  arrays  must  be dimensioned at  compile-time. Also parameters 
must  either  be  passed by reference, creating  long  argument  lists,  or  kept in 
common and exposed to inadvertent  modification.  Such an  organization is 
complex to  maintain, especially as codes are modified for  new experiments. 

Using the new features of Fortran 90, abstractions  can  be  introduced  that 
clarify the  organization of the code. The  Fortran 90 version is more  readable 
while  designed for modification a,nd extension. 

use partitionmodule ; use plasmamodule 
type (species) :: electrons 
type  (scalarfield) :: charge-density 
type  (vectorfield) :: efield 
type  (slabpartition) :: edges 
real :: dt = .2 
call plasma-particle-push(  electrons, efield, edges, dt ) 
call plasma-deposit-charge(  electrons, cha.rge-density, edges ) 

This  style of object-oriented  programming,  where  the  basic data  unit is an 
“object”  that shields its  internal  data from  misuse by providing  public  routines 
to  manipulate  it, allows  such a code to  be designed and  written.  Object- 
Oriented  programming clarifies software  while  increasing  safety and communi- 



00 FORTRAN 90 PROGRAMMING 3 

cation  among developers, but  its benefits are only useful for sufficiently large 
and complex programs. 

While  Fortran 90 is not an object-oriented  language,  the new features allow 
most of these  concepts to be modeled  directly.  (Some  concepts  are  more  com- 
plex to emulate.)  In  the following, we will describe how object-oriented  concepts 
can be  modeled in Fortran 90, the  application of these  ideas to  plasma PIC pro- 
gramming on supercomputers,  parallel  unstructured  adaptive mesh  refinement, 
and  the  future of Fortran  programming  (represented by Fortran 2000) that will 
contain explicit object-oriented  features. 

1.2 MODELING  OBJECT-ORIENTED  CONCEPTS IN FORTRAN 90 

Object-Oriented  programming  (OOP)  has received  wide acceptance,  and  great 
interest,  throughout  the  computational science  community  as an  attractive  ap- 
proach to  address  the needs of modern  simulation.  Proper use of OOP ensures 
that,  programs  can  be  written safely, since the  internal  implementation  details 
of the  data  objects  are  hidden.  This allows the  internal  structure of objects 
and t>heir operations to be modified (to improve efficiency perhaps),  but  t,he 
overall structure of the code  using the  objects  can  remain  unchanged.  In  other 
words, objects  are  an  encapsulation of da,ta  and rout,ines. 

These  objects  represent  abstractions.  another  important  concept is the 
notion of inheritance, which allows new abstractions to be  creaked by preserv- 
ing  features of existing  abstractions.  This allows objects to gain new features 
through some  form of code reuse. Additionally,  polymorphism  allows  routines 
t,o be  applied to a  variety of objects  that  share  some  relationship,  but  the  spe- 
cific action  taken varies dynamically  based  on  the  object’s  type.  These  ideas 
are  mechanisms for writing  applications  that  more closely represent  the  prob- 
lem at  hand. As a  result,  a  number of programming  languages  support  OOP 
concepts in some manner. 

Fortran 90 is  well-known  for introducing  array-syntax  operations  and  dy- 
namic  memory  management.  While useful, this  represents  a  small  subset of 
t,he  powerful new features available for scientific programming.  Fortran 90 is 
backward  compatible  with  Fortran 77 and, since it is a  subset of High  Perfor- 
mance  Fortran  (HPF),  it provides  a  migration path for data-parallel  program- 
ming.  Fortran 90 type-checks parameters to routines, so passing the wrong 
arguments  to  a  function will generate a compile-time error.  Additionally,  the 
automatic  creation of implicit variables can  be  suppressed  reducing  unexpected 
results. 

However,  more  powerful  features  include  derived-types,  which allow user- 
defined types to be  created from  existing  intrinsic  types  and  previously  defined 
derived-types.  Many  forms of dynamic  memory  management  operations  are 
now available,  including  dynamic  arrays  and  pointers.  These new Fortran 90 
constructs  are  objects  that know information  such  as  their size, whether  they 
have  been allocated,  and if they refer to valid data.  Fortran 90 modules  allow 
routines to be  associated  with  types  and data defined  within the  module.  These 
modules  can  be  used in various  ways, to bring  new  functionality to program 



units.  Component,s of the module  can be  private  and/or  public allowing in- 
terfaces to be  constructed  that  control  the accessibility of module  components. 
Additionally,  operator  and  routine overloading are  supported  (name  reuse),  al- 
lowing the  proper  routine  to  be called automatically  based on the  number  and 
types of the  arguments.  Optional  arguments  are  supported,  as well as generic 
procedures that allow  a single routine  name to be used while the  action  taken 
differs based  on  the  type of the  parameter. All  of these  features  can  be used to 
support  an  object-oriented  programming  methodology (Decyk et al., 1997a). 

1.3 APPLICATION:  PLASMA PIC PROGRAMMING  ON 
SUPERCOMPUTERS 

Computer  simulations  are  very useful for understanding  and  predicting  the 
transport of particles  and  energy in fusion  energy  devices called tokamaks 
(Birdsall  and  Langdon, 1991). Tokamaks, which are  toroidal  in  shape, con- 
fine the  plasma  with a combination of an  external  toroidal  magnetic field and 
a. self-generated  poloidal  magnetic field. Understanding  plasma confinement in 
tokamaks could  lead to  the practical  development of fusion  energy as  an  al- 
ternative fuel source---unfortunately  confinement is not well understood  and is 
worse than  desired. 

PIC codes integrate  the  trajectories of many  particles  subject to  electro- 
magnetic forces, both  external  and  self-generated.  The  General  Concurrent 
PIC Algorithm  (Liewer  and  Decyk,  1989),  which  partitions  particles a.nd fields 
among  the  processors of a  distributed-memory  supercomputer,  can  be  pro- 
grammed using  a  single-program  multiple-data (SPMD) design approach. Al- 
though  the  Fortran 77 versions of these  programs have  been  well-benchmarked 
and  are  scalable  with  nearly 100% efficiency, there is an increasing  interest 
within  the scientific community to apply  object-oriented principles to enhance 
new code  development. 

In  the  introduction, we illustrated how Fortran 77 features could  be  modeled 
using Fortran 90 constructs.  In designing the  PIC  programs,  basic  constructs 
like particles  (individually  and collectively), fields (scalar  and  vector,  real  and 
complex),  distribution  operations,  diagnostics,  and  partitioning schemes were 
created  as  abstractions using Fortran 90 modules.  Fortran  90  objects  are  de- 
fined by derived types  within  modules where the  public  routines  that  operate 
on  these  objects  are visible whenever the  object is “used”.  (The  private com- 
ponents of the  module  are only accessible within  module  defined  routines.) 

A portion of the species module  (Figure 1.1) illustrates how data  and  routines 
can be encapsulated using  object-oriented  concepts.  This  module defines the 
particle collection, where the  interface to  the  particle Maxwellian distribution 
routine is included. 

Some OOP concepts,  such as inheritance,  had  limited usefulness  while run- 
time  polymorphism was used infrequently. Our  experience  has shown that  these 
features, while  sometimes  appropriate for general  purpose  programming,  do  not 
seem to be as useful in scientific programming.  Well-defined  interfaces, that 
support  manipulation of abstractions, were  more important.  More  details  on 
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Figure 1.1 Abstract of  Fortran 90 module  for  particle  species. 
module species-module 

use distributionmodule ; use partitionmodule 
implicit  none 
type  particle 

private 
real :: x, y, z, vx, vy, vz 

end  type  particle 
type species 

real :: qm,  qbm, ek 
integer :: nop,  npp 
type  (particle),  dimension(:),  pointer :: p 

end  type species 

subroutine species-distribution(this, edges, distf) 
type  (species).  intent  (out) :: this 
type  (sla,bpartition),  intent  (in) :: edges 
type (dist,fcn), intent  (in) :: distf 

contains 

! subrout>ine body 
end  subroutine species-distribution 
! a,dditional  member  routines ... 

end  module speciesmodule 

the overall structure of the code  can be found  in  (Norton et al.,  1995;  Norton 
et  ai.,  1997j. 

The wall-clock execution  times for the 3D parallel PIC code written in For- 
tran 90, Fortran 77, and  C++  are  illustrated in  Table  1.1.  Although  our 
experience  has been that  Fortran 90 continually  outperforms C++ on com- 
plete  programs, generally by a factor of two, others have performance  results 
that  indicate  that C++ can  sometimes  outperform Fortran 90 on some com- 
putational kernels (Cary  et  al.,  1997).  (In t,hese cases,  “expression templates” 
are  introduced  as a  compile-time  optimization to  speed up complicated array 
operations.) 

Table 1.1 3 0  Parallel  Plasma  PIC  Experiments  on the Cornell  Theory  Center IBM SP2 
(32 Processors, 8M Particles, 260K Grid Points). 

I Language 1 Compiler 1 P2SC Super  Chips 1 P2SC Optimized 1 
Fortran 90 

1173.31s  1316.20s KAI  KCC C++ 
537.95s  668.03s IBM xlf Fortran 77 
488.88s 622.60s IBM xIf90 
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The most aggressive  compiler  options  produced the  fastest  timings. seen 
in Table 1.1. The KAI C++ compiler with  +K3 -03 -abstract-pointer  spent 
over 2 hours in the  compilation process. The IBM F90 compiler with - 0 3  
-qlanglvl=90std  -qstrict  -qalias=noaryovrlp  used 5 minutes  for  compilation. 
(The KAI compiler is generally  considered the  most efficient C++ compiler 
when objects  are  used.  This compiler generated  slightly  faster  executables 
than  the IBM C++ compiler.)  Applying  the  hardware  optimization  switches 
-qarch=pwr2  -qtune=pwr2  introduced  additional  performance  improvements 
specific to  the P2SC processors. 

We ha,ve found  Fortran 90  very useful, and  generally safer with  higher  per- 
formance  than C++ and  sometimes  Fortran 77, for large  problems  on  super- 
computers.  Fortran 90 derived-type  objects  improved  cache  utilization, for 
large  problems,  over  Fortran 77. (The C++ and  Fortran 90 objects  had  the 
same  storage  organization.)  Fortran 90  is  less powerful than C++, since it  has 
fewer features  and  those available can  be  restricted to enhance  performance, 
but  many of the  advanced  features of C++ have not been  required in scientific 
computing.  Nevertheless,  advanced C++ feahres may  be  more  appropriate for 
other  problem  domains (Decyk  et al.,  1997b;  Norton  et  al.,  1997). 

1.4 APPLICATION: PARALLEL UNSTRUCTURED  ADAPTIVE  MESH 
REFINEMENT 

Adaptive mesh  refinement is an advanced  numerical  technique  very useful in 
solving partial differential equations. Essentially, adaptive  techniques  utilize 
a  descretized  computational  domain that is subsequently  refined/coarsened in 
areas where additional  resolution is required.  Parallel  approaches  are  necessary 
for large  problems,  but  the  implementation  strategies  can  be complex  unless 
good  design  techniques are  applied. 

One of the  major benefits of Fortran 90 is that codes  can be  structured using 
the  principles of object-oriented  programming.  This  allows the development of 
a  parallel  adaptive  mesh  refinement  (PAMR)  code  where  interfaces  can  be  de- 
fined in  terms of mesh  components:  yet the  internal  implementation  details  are 
hidden.  These  principles also simplify handling  interlanguage  communication, 
sometimes  necessary  when additional packages are  interfaced to new  codes. Us- 
ing Fortran 90’s abstraction  techniques: for example,  a  mesh  can  be  loaded  into 
the  system,  distributed  across  the  processors,  the  PAMR  internal  data  struc- 
ture  can  be  created,  and  the mesh  can  be repartitioned  and  migrated to new 
processors  (all in parallel)  with  a few simple statements as shown in  Figure 1.2. 

A user  could link in the  routines  that  support  parallel  adaptive mesh re- 
finement  then, as long as the  data  format from the mesh generation package 
conforms to one of the specified formats;  the  capabilities  required for PAMR 
are  available. We now describe  the  Fortran 90 implementation  details  that 
make  this possible. 
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Figure 1.2 A main  program with selected PAMR library calls. 
program  pamr 
use  mpi-module ; use  mesh-module ; use miscmodule 
implicit  none 
integer :: ierror 
chara,cter(len=8) :: input-meshfile 
type  (mesh) :: inmesh 
call MPI-INIT( ierror ) 

input-mesh-file = meshname(  iam ) 
call mesh..createincore(  in-mesh, input-meshfile ) 
call mesh-repartition(  inmesh ) 
call mesh-visualize( inmesh, "visfile.plt" ) 

call MPI-FINALIZE( ierror ) 
end program  pamr 

1.4.1 Basic Mesh Definibjon 

Fortran 90 modules allow data  types to be defined in combination  with  related 
routines.  In  our  system  the  mesh is described, in part, as shown in Figure 1.3. 
In  two-dimensionsl the mesh is a Fortran 90 object  containing  nodes,  edges, el- 
ements,  and reference  informat,ion  about  non-local  boundary  elements  (r-indx). 
These  components  are  dynamic;  their size can  be  determined  using  Fortran 90 
intrinsic  operations.  They  are also private,  meaning  that  the  only way to ma- 
nipulate  the  components of the mesh are by routines defined within  the  module. 
Incidentally,  the  remote  index  type r indx  (not  shown) is another  example of 
encapsulation.  Objects of this  type  are defined so that  they  cannot  be  created 
out,side of the  module at  all. A module  can  contain  any  number of derived 
types  with various levels of protection, useful in our mesh data  structure im- 
p1ement)ation strategy. 

All module  components  are  declared  private,  meaning that none of its com- 
ponents  can  be referenced or used outside  the scope of the module.  This en- 
capsulation  adds  safety  to  the design  since the internal  implementation  details 
are  protected,  but  it is also very  restrictive.  Therefore,  routines that  must  be 
available to module  users  are explicitly listed as public.  This  provides an  inter- 
face to  the module  features available as the  module is used in  program  units. 
Thus,  the  statement in the  main  program from Figure 1.2: 

call mesh-createincore(  in-mesh, input-mesh-file ) 

is a legal statement since this  routine is public. However the  statement: 

element-id = in-mesh%elements(lO)%id 

is illegal since the "elements"  component of in-mesh is private to  the derived 
type in the  module. 
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Figure 1.3 Skeleton view of mesh-module components. 
module meshmodule 
use mpi-module ; 71se heapsortmodule 
implicit  none 
private 
public :: mesh-createincore,  mesh-repartition, & 

integer,  parameter :: mesh_dim=2,  nodes-=3, edges-=3,  neigh-=3 
t'ype  element 

mesh-visualize 

private 
int,eger :: id,  nodeix(nodes-),  edgeix(edges-), & 

neighix(neigh-) 
end type  element 
type mesh 

private 
type(node),  dimension(:),  pointer :: nodes 
tgpe(edge),  dimension(:),  pointer :: edges 
type(element),  dimension(:),  pointer :: elements 
type(r-indx),  dimension(:),  pointer :: boundary-elements 

end type mesh 
conta.ins 

subroutine  mesh-createincore(this, mesh-file) 
type  (mesh):  intent(inout) :: this 
character(len=*),  intent(in) :: meshfile 

end  subroutine  mesh-createincore 
! additional member  routines ... 

! details omitked ... 

end module  mesh-module 

The mesh-module  uses  other  modules in its  definition, like the  mpimodule 
and  the  heapsortmodule.  The mpi-moduIe  provides  a Fortran 90 interface to 
MPI while the  heapsortmodule is used for  efficient construction of the dis- 
tributed mesh data  structure.  The  routines defined  within the  contains  state- 
ment,  such  as  mesh-createincore(), belong to  the module.  This  means that 
routine  interfaces, that perform  type  matching on arguments for correctness, 
are  created  automatically.  (This is similar to function  prototyping in other 
languages.) 

1.4.2 Distributed  structure  organization 

When  the PA4MR mesh data  structure is constructed  it is actually  distributed 
across the processors of the  parallel  machine.  This  construction  process  consists 
of loading  the mesh data,  either from  a single processor for parallel  distribu- 
tion (in-core) or from  individual  processors in parallel  (out-of-core). A single 
mesh-build routine is responsible for constructing  the mesh  based  on  the  data 
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provided.  Fortran 90 routine overloading and  optional  arguments allom7 multi- 
ple interfaces to  the mesh-build routine,  supporting  code  reuse.  This is helpful 
because  the  same  code  that builds a distributed PAMR mesh data  structure 
from  the  initial  description  can  be  applied  to  rebuilding  the  data  structure  after 
refinement and mesh  migration. The mesh-build routine,  and  its  interface, is 
hidden  from  public use. Heap  sorting  techniques  are also applied  in  building 
the hierarchical  structure so that reconstruction of a  distributed mesh after 
refinement and mesh  migration  can be performed  from  scratch,  but efficiently. 

The  main  requirement imposed on  the  distributed  structure is that every 
element  knows  its  neighbors.  Local  neighbors  are  easy to find on  the  current 
processor  from t,he PAMR structure.  Remote  neighbors  are known  from the 
boundary-elements  section of the mesh data  structure, in combination  with  a 
neighbor  indexing  scheme.  When  an  element  must  act on it,s neighbors tJhe 
neighbor  index structure will either  have a. reference to a  complete  description 
of the local neighbor  element or a  reference to a  processorid/globalid  pairing. 
This  pairing  can  be used to fetch  any data required  regarding  the  remote ele- 
ment  neighbor.  (Note that  partition  boundary  data, such as  a  boundary face in 
three-dimensions, is replicated on processor  boundaries.)  One of the  benefits 
of this scheme is that any  processor can refer to a specific part of the  data 
structure to  access its  complete list of non-local  elements. 

Figure 1.3 showed the  major  components of the mesh data  structure, in 
t,wo-dimensions.  While Fortran 90 fully supports linked list structures  using 
pointers,  a common  organization for PAMR. codes,  our  system  uses  pointers to  
dynamica.lly  allocated arrays  instead.  There  are  a  number of reasons  why  this 
organization is used.  By  using heap  sorting  methods  during  data  structure con- 
struction,  the  array references for mesh  components  can  be  constructed  very 
quickly. Pointers  consume memory, and  the  memory references can become 
"unorganized" , leading to poor  cache utilization.  While  a  pointer-based  orga- 
nization  can  be useful, we have  ensured that our  mesh reconstruction  methods 
are f a t  enough so that  the  additional  complexity of a  pointer-based  scheme 
can  be  avoided. 

1.4.3 Interfacing  among  data  structure  components 

The  system is designed to make  interfacing  among  components  very easy. Usu- 
ally, the only argument  required to a PAMR public  system call is the mesh 
itself,  as  indicated in Figure  1.2.  There  are  other  interfaces  that  exist how- 
ever,  such  as  the  internal  interfaces of Fortran 90 objects  with MPI and  the 
ParMeTiS  parallel  partitioner  (Karypis  et al., 1997)  which  were written in the 
C programming  language. 

Since Fortran 90 is backward compatible  with  Fortran 77 it is possible to 
link to  MPI for interlanguage  communication,  assuming that  the interface  dec- 
larations have  been  defined in the  mpih header file properly.  While  certain 
array  constructs have  been useful, such  as array  syntax  and  subsections, MPI 
does not  support  Fortran 90  directly so array  subsections  cannot,  be (sa,fely) 
used as  parameters to the  library  routines.  Our  system uses the  ParMeTiS 



graph  partitioner  to  repartition  the mesh for load  balancing.  In  order to com- 
municate  with  ParMeTiS  our  system  internally  converts  the  distributed  mesh 
into a. distributed  graph. A single routine  interface to C is created  that  passes 
the  graph  description from Fortran 90 by reference. Once the  partitioning is 
complete,  this  same  interface  returns from C an  array  that describes  the new 
partitioning  to  Fortran 90. This is then used in the parallel  mesh  migration 
stage to balance  mesh  components  among  the  processors. 

1.4.4 Interfacing among C and Fortran 90 for mesh migration 

ParMeTiS only returns  information on the mapping of elements to (new)  pro- 
cessors: it  can  not  actually  migrate  elements  across  a  parallel  system.  Our 
parallel  mesh  migration  scheme  reuses  the efficient mesh-build()  routine to con- 
struct  the new  mesh  from the  ParMeTiS  repartitioning.  During  this mesh-build 
process the  element  information is migrat,ed  according to  this  partitioning. 

Figure 1.4 A main  program with selected PAMR library  calls. 
subroutine  mesh-repartition(this) 
type  (mesh),  intent(inout) :: this 

! statements  omitted ... 
call PARMETIS(mesh-adj,  mesh-repart, nelem, nproc,  iam) ! C 
call mesh-build(this, newmeshrepart=meshrepart) 

end subroutine  mesh-repartition 

As seen in Figure 1.4, information  required by the  ParMeTiS  partitioner 
is provided by calling a  Fortran 90 routine  that  converts  the mesh adjacency 
structure  into  ParMeTiS  format  (hidden).  When  this call returns from C, the 
private  mesh-build()  routine  constructs  the new distributed mesh  from the  old 
mesh and  the new repartitioning by performing  mesh  migration.  Fortran 90 al- 
lows optional  arguments to be selected by keyword. This allows the mesh-build 
routine to serve  multiple  purposes since a  keyword  can  be checked to determine 
if migration  should  be  performed  as  part of the mesh construction process: 

subroutine  mesh-build(this, mesh-file, new-meshrepart, in-core) 
integer,  dimension(:),  intent(in),  optional :: new-meshrepart 
logical, intent(in),  optional :: in-core 
! statements  omitted ... 

if (present(new-meshrepart)) then 
! perform  mesh  migration ... 

end if 
! (re)construct  the mesh  independent of input  format ... 

end  subroutine mesh-build 

This is another way in which the new features of Fortran 90 add  robustness 
to the  code design. The way  in  which t,he new mesh data is presented,  either 
from  a file format  or from  a repartitioning, does not  matter.  Once  the  data in 
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organized in our  private  internal  format  the mesh  can  be reconstructed by  code 
reuse. 

1.4.5 Design  Applications 

The AMR library  routines have  been  applied to  the finite-element simulation of 
electromagnetic wave scattering in a  waveguide  filter, as well as long-wavelength 
infrared  radiation in a  quantum well infrared  photodetector.  Future  applica- 
tions  may  include  micro-gravity  experiments  and  other  appropriate  applica- 
tions.  This software runs on the  Cray T3E, HP/Convex  Exemplar, IBM SP2, 
and Beowulf-class pile-of-pc’s running  the LINUX operating  system. 

1.5 DO SCIENTIFIC  PROGRAMS  BENEFIT  FROM 
OBJECT-ORIENTED  TECHNIQUES? 

Many of the benefits of object-oriented  programming  are  probably most> suited 
only for very  large  programs--typically programs  larger  than  many scientific 
programmers  are involved  in-perhaps hundreds of thousands of lines. Never- 
theless,  most principles can  be  applied for smaller  and  medium scale efforts. 
We have  applied  these  techniques in an  experimental way on  skeleton  programs, 
but  the effort addresses principles that will affect large scale development. 

Object,-Oriented  design will not solve every problem,  but  it  does force one 
to consider issues that normally  might  be  ignored.  This  includes  defining  ab- 
stractions clearly, their  relationships,  and  organization for extension to new 
problems.  This  increases  the development time for an  initial  project,  but  hope- 
fully reduces the effort in constructing new related  projects. 

One  must  question if the highly promoted benefits are  real.  Since scientific 
applications  contain  components  that work together  to solve complex prob- 
lems,  encapsulation  and  modularity  promote good  designs for these  programs. 
The clarifies understanding, allows  modifications to be  introduced in an con- 
trolled  manner,  increases safety, and  supports  the work of multiple  contributors. 
Some features, like subtyping  inheritance  and  dynamic  polymorphism  are  good 
object-oriented  principles,  but  their  general usage in scientific applications was 
very limited,  or  non-existent, in our  experience.  Some  research  has  been  per- 
formed in measuring  the  performance effects of constructs used in an  object- 
oriented  fashion in C++  and  Fortran 90 (Cary  et  al.,  1997;  Norton,  1996). 
However, more work is needed  before  performance  can  be  a  deciding factor in 
language  selection,  all  other  factors  being  relatively  equal.  Modern  applica- 
tions  are growing  more  complex,  hence  object-oriented  techniques  can clarify 
their  organization,  but  this does not  imply that all aspects of the  paradigm  are 
necessary. 

We have  experienced  increased  software safety, understandability by abstrac- 
tion  modeling,  Fortran 77 level performance,  and  the  modernization of existing 
programs  without redevelopment in a new language. The  modern  features of 
Fortran 90 are redefining the  nature of Fortran-based  programming,  although 
much interest is focused  on  comparing Fortran 90 and  C++ for scientific pro- 
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gramming  (Cary  et  al., 1997; Decyk et  al., 1997b;  Norton,  1996). New project,s 
may  be  considering  one of these  languages,  existing  projects  may  reconsider 
their decision to  adopt  C++ or  Fortran  90,  and  current  projects  may consider 
migration to  the “other”  language. Most of this  activity grew  from a realiza- 
tion of the new features  Fortran 90 makes  available as well as  the  continual 
improvement  in C++ compiler technology. Scientific programming  can  benefit 
from  object-oriented  techniques. 

1.6 CONCLUSION 

The use of object-oriented  concepts for Fortran 90 programming  is very benefi- 
cial. The new features  add  clarity  and safety to  Fortran programming allowing 
computational scientists to  advance t,heir research, while preserving their in- 
vestment in existing  codes. 

Our web site provides  many  additional  examples of how object-orient,ed  con- 
cepts  can  be modeled in Fortran 90 (Xorton  et  al., 1996).  Many  concepts, like 
encapsulation of data  and routines  can  be  represented  directly.  Other  features, 
such as  inheritance  and  polymorphism,  must  be  emulated  with a combination 
of Fortran 90’s existing  features and user-defined constructs.  (Procedures for 
doing this  are also included at the web site.)  Additionally, an evaluation of 
compilers is included to provide  users  with an  impartial  comparison of prod- 
ucts from different vendors. 

The  Fortran 2000 standard  has been defined to include  explicit object- 
oriented  features  including single inheritance,  polymorphic  objects,  parame- 
terized  derived-types,  constructors,  and  destructors.  Other  features,  such  as 
interoperability  with C will simplify support for advanced  graphics  within For- 
tran 2000. 

Parallel  programming  with MPI and  supercomputers is possible with For- 
tran 90. However, MPI does  not  explicitly support  Fortran 90 style  arrays, so 
structures such as  array subsections  cannot be passed to  MPI routines. The 
Fortran 90 plasma PIC programs were longer than  the  Fortran 77 versions 
(but more  readable),  and much shorter  than  the C++ programs  because  fea- 
tures useful for scientific programming  are not automatically available  in C++. 
Also, the  portability of the  Fortran 90 parallel adaptive mesh refinement system 
among  various  machines and compilers was excellent compared to  difficulties 
experienced  with  portability of C++ programs  among  compilers and machines. 
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